212 research outputs found

    Limitations on the attainable intensity of high power lasers

    Full text link
    It is shown that even a single ee+e^-e^+ pair created by a super strong laser field in vacuum would cause development of an avalanche-like QED cascade which rapidly depletes the incoming laser pulse. This confirms the old N. Bohr conjecture that the electric field of the critical QED strength ES=m2c3/eE_S=m^2c^3/e\hbar could never be created.Comment: 4 pages, 3 figure

    Creation of electron-positron plasma with superstrong laser field

    Full text link
    We present a short review of recent progress in studying QED effects of interaction of ultra-relativistic laser pulses with vacuum and ee+e^-e^+ plasma. The development of laser technologies promises very rapid growth of laser intensities in close future already. Two exawatt class facilities (ELI and XCELS, Russia) in Europe are already in the planning stage. Realization of these projects will make available a laser of intensity 1026\sim 10^{26}W/cm2^2 or even higher. Therefore, discussion of nonlinear optical effects in vacuum are becoming urgent for experimentalists and are currently gaining much attention. We show that, in spite of the fact that the respective field strength is still essentially less than ES=m2c3/e=1.321016E_S=m^2c^3/e\hbar=1.32\cdot 10^{16}V/cm, the nonlinear vacuum effects will be accessible for observation at ELI and XCELS facilities. The most promissory for observation is the effect of pair creation by laser pulse in vacuum. It is shown, that at intensities 51025\sim 5\cdot 10^{25}W/cm2^2, creation even of a single pair is accompanied by development of an avalanchelike QED cascade. There exists an important distinctive feature of the laser-induced cascades, as compared with the air showers arising due to primary cosmic ray entering the atmosphere. In our case the laser field plays not only the role of a target (similar to a nucleus in the case of air showers). It is responsible also for acceleration of slow particles. It is shown that the effect of pair creation imposes a natural limit for attainable laser intensity. Apparently, the field strength EESE\sim E_S is not accessible for pair creating electromagnetic field at all.Comment: To be published in digest "IZEST Scientific Case" in EPJ ST early 201

    Multiple colliding electromagnetic pulses: a way to lower the threshold of e+ee^+e^- pair production from vacuum

    Full text link
    The scheme of simultaneous multiple pulse focusing on one spot naturally arises from the structural features of projected new laser systems, such as ELI and HiPER. It is shown that the multiple pulse configuration is beneficial for observing e+ee^+e^- pair production from vacuum under the action of sufficiently strong electromagnetic fields. The field of the focused pulses is described using a realistic three-dimensional model based on an exact solution of the Maxwell equations. The e+ee^+e^- pair production threshold in terms of electromagnetic field energy can be substantially lowered if, instead of one or even two colliding pulses, multiple pulses focused on one spot are used. The multiple pulse interaction geometry gives rise to subwavelength field features in the focal region. These features result in the production of extremely short e+ee^+e^- bunches.Comment: 10 pages, 4 figure

    Hydrodynamic approach to many-body systems: exact conservation laws

    Full text link
    In this paper I present a pedagogical derivation of continuity equations manifesting exact conservation laws in an interacting electronic system based on the nonequilibrium Keldysh technique. The purpose of this exercise is to lay the groundwork for extending the hydrodynamic approach to electronic transport to strongly correlated systems where the quasiparticle approximation and Boltzmann kinetic theory fail.Comment: 23 page
    corecore